CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 2

October 2007

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	This examination consists of 7 questions on 3 pages.			
<u>Q. No</u>	Mo Time: 3 hours			
1	 Define or explain the following terms: a) Precision b) Accuracy c) Standard deviation d) Root mean square error e) Correlation coefficient f) Redundancy of a linear system g) Type I and type II errors in statistical testing 	15		
2	 Given the following mathematical model f(λ, x) = 0 C_λ C_x where f is the vector of mathematical models, x is the vector of unknown parameters and C_x is its variance matrix, λ is the vector of observations and C_λ is its variance matrix. a) Linearize the mathematical model b) Formulate the variation function c) Derive the least squares normal equation d) Derive the least squares solution of the unknown parameters. 	15		
3	Given a leveling network below where A and B are known points, h_1 and h_2 are two height difference measurements with standard deviation of σ_1 and σ_2 , respectively and $\sigma_1 = 2 \sigma_2$. Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution at P using least squares adjustment is equal to 2mm. $ \frac{h_1}{A} \xrightarrow{h_2} B $	10		

	Given the variance-covariance matrix of the measurement vector $\lambda = \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$:								
4	$\mathbf{C}_{\lambda} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$								
	and two functions of λ : $x = \lambda_1 + \lambda_2$ and $y = 3\lambda_1$, determine $C_{xy}, C_{x\lambda}, C_{y\lambda}$								
5	Given the variance-covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station.								
	$C_{x} = \begin{bmatrix} 0.000532 & 0.000602\\ 0.000602 & 0.000838 \end{bmatrix} m^{2}$								
	The following residual vector $\hat{\mathbf{r}}$ and estimated covariance matrix $C_{\hat{\mathbf{r}}}$ were computed from a least squares adjustment using five independent observations with a standard deviation of $\sigma = 2$ mm and a degree of freedom $v = 2$:								
	$\hat{\mathbf{r}} = \begin{bmatrix} 4 & 2 & -3 & 10 \end{bmatrix}$ (mm)								
	$C_{\hat{r}} = \begin{bmatrix} 15 & 1 & 3 & -2 \\ 1 & 7 & -1 & 3 \\ 3 & -1 & 4 & -1 \\ -2 & 3 & -1 & 2 \end{bmatrix} $ (mm ²)								
	Given $\alpha = 0.01$,								
	a) Conduct a global test to decide if there exists any outlier or not.								
6	The critical values that might be required in the testing are provided in the following tables:								
	α 0.001 0.01 0.02 0.05 0.10								
	$\chi^2_{\alpha, v=2}$ 13.82 9.21 7.82 5.99 4.61								
	α 0.001 0.002 0.003 0.004 0.005 0.01 0.05								
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
	where $\chi^2_{\alpha, \nu=2}$ is determined by the equation $\alpha = \int_{\chi^2_{\alpha, \nu=2}}^{\infty} \chi^2(x) dx$ and K_{α} is								
	determined by the equation $\alpha = \int_{K_{\alpha}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$.								

	Given the angle measurements at a station along with their standard deviations:					
		Angle	Measurement	Standard Deviation		
		α	134°38'56"	6.7"		
		β	83°17'35"	9.9"		
		γ	142°03'14"	4.3"		
7	α β γ β				25	
	Perform least squares adjustment to the problem using					
	a) Conditional equations (conditional adjustment)b) Observation equations (parametric adjustment)					
				Total Marks:	100	