CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 1 MATHEMATICS

October 2007

Note:	This examination consists of 10 questions on 1 page.	Marks	
<u>Q. No</u>	Time: 3 hours	Value	Earned
1. a)	In Cartesian x, y and z coordinates, what is the equation of a sphere of radius r with centre at $(1, 2, 3)$?	5	
b)	For some arbitrary point (x_1, y_1, z_1) on the previous sphere, what is the equation of the tangent plane? Briefly explain the steps in deriving the tangent plane equation.	5	
2. a)	In two-dimensional Cartesian coordinates, what is the general equation for a parabola? Explain the meanings of the parameters used.	5	
b)	In two-dimensional Cartesian coordinates, what is the general equation for a hyperbola? Explain the meanings of the parameters used.	5	
3. a)	Given a function $f(x, y, z) = e^{xyz}$, what is the total derivative $df(x, y, z)$?	5	
b)	What are the partial derivatives $\partial f/\partial x$, $\partial f/\partial y$ and $\partial f/\partial z$ of $f(x, y, z) = e^{xyz}$?	5	
4. a)	For an arbitrary square matrix A, express A as a sum of a symmetric matrix B and a skew-symmetric matrix C. Justify the choice of the matrices B and C.	5	
b)	Give an example of a small matrix A of order 4 with the computations for B and C.	5	
5. a)	What is de Moivre's formula for complex exponentials?	5	
b)	In the complex plane, what are the real and imaginary parts of a complex function sin z?	5	
6. a)	Expand $(1 + 2x)^{1/4}$ into a power series in terms of x. Evaluate the first 3 terms only.	5	
b)	What can be said about the convergence of this series for $(1 + 2x)^{1/4}$?	5	
7. a)	Given three equations $x + 2y + 3z = 15$, $x - 4y + 5z = 18$, $x + 6y - 7z = 21$, what are x, y and z by Gaussian elimination?	5	
b)	What are the x, y and z by applying Cramer's rule to the preceding equations?	5	
8. a)	For an homogeneous algebraic system $Ax = 0$ for an arbitrary square matrix A, when does it have only the solution $x = 0$?	5	
b)	For the same homogeneous algebraic system $Ax = 0$ for an arbitrary square matrix A, when does it have at least one solution $x \neq 0$?	5	
9. a)	For some function $f(x)$, $d^2f(x)/dx^2 = \log x$, then what is the general solution $f(x)$?	5	
b)	For the preceding differential equation and initial conditions $f(1) = 1$ and $df(1)/dx = 0$, what is the solution $f(x)$?	5	
10. a)	For a function $g(x,y)$, given $\partial^2 g(x,y)/\partial x^2 = \cos xy$, what is the general solution $g(x,y)$?	5	
b)	For a function $g(x,y)$, given $\partial^2 g(x,y)/\partial y^2 = \cos xy$, what is the general solution $g(x,y)$?	5	
	Total Marks:	100	