CANADIAN BOARD OF EXAMINERS FOR PROFESSIONAL SURVEYORS ATLANTIC PROVINCES BOARD OF EXAMINERS FOR LAND SURVEYORS

SCHEDULE I / ITEM 2

March 1007

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	This examination consists of 8 questions on 3 pages.	Marks	
Q. No	Time: 3 hours	Value	Earned
1	Given the following mathematical models $\mathbf{f}_1(\ell_1,\mathbf{x}_1) = 0 \mathbf{C}_{\ell_1} \mathbf{C}_{x_1}$ $\mathbf{f}_2(\ell_2,\mathbf{x}_1,\mathbf{x}_2) = 0 \mathbf{C}_{\ell_2} \mathbf{C}_{x_2}$ where \mathbf{f}_1 and \mathbf{f}_2 are vectors of mathematical models, \mathbf{x}_1 and \mathbf{x}_2 are vectors of unknown parameters, ℓ_1 and ℓ_2 are vectors of observations, $\mathbf{C}_{\ell_1}, \mathbf{C}_{\ell_2}, \mathbf{C}_{x_1}$ and \mathbf{C}_{x_2} are covariance matrices. a) Linearize the mathematical models b) Formulate the variation function	10	
2	Given n independent measurements of a single quantity: $\ell_1, \ell_2,, \ell_n$ and their corresponding standard deviations: $\sigma_1, \sigma_2,, \sigma_n$, derive the expression for the variance of the mean value using the Law of Propagation of Variances.	10	
3	Given the following variance-covariance matrix from a least squares adjustment for the coordinates of point A and B, $C_{x} = \begin{bmatrix} 10 & 5 & 2 & 1 \\ 5 & 10 & 1 & 1 \\ 2 & 1 & 5 & 2 \\ 1 & 1 & 2 & 5 \end{bmatrix} m^{2} \text{where } x = [x_{A} y_{A} x_{B} y_{B}]^{T}.$ a) Compute the correlation coefficient between x_{A} and y_{B} . b) Compute the correlation coefficient between y_{A} and x_{B} . c) Compute the variance-covariance matrix for the coordinate differences $\Delta x = x_{B} - x_{A}$ and $\Delta y = y_{B} - y_{A}$.	10	

4	Given the covariance matrix of the horizontal coordinates (x, y) of a survey station, determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station. $C_x = \begin{bmatrix} 0.0484 & 0.0246 \\ 0.0246 & 0.0196 \end{bmatrix} \text{ m}^2$						
5	Define or ex 1) Prec 2) Acc 3) Stati 4) Type 5) Type 6) Exp 7) Deg	15					
6	standard deviation construct a 95 $ m P$ $ m \alpha$ $ m 0.0 \c K_{\alpha}$ $ m 2.5 \c c$	% confidence sercentiles of S	n and the calculate and the ca	population mal Distribut 0.01 0.0 2.33 1.	ion 025 0.05 96 1.64		
7	A baseline of calibrated length (μ) 1153.00m is measured 5 times independently with the same precision. The sample mean (\overline{x}) and sample standard deviation (s) are calculated from the measurements: \overline{x} =1153.39m s = 0.06m Test at a 90% confidence level (α) if the measured distance is significantly different from the calibrated distance. Percentiles of t distribution $\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

