SCHEDULE 1 / ITEM _2 LEAST SQUARES ESTIMATION AND DATA ANALYSIS

<u>February 2000</u> (1990 Regulations) (Closed Book)

Time: 3 hours

Note: This examination consists of 5 questions on 2 pages

PROBLEM 1

Given below is the covariance matrix obtained from a least-squares adjustment for a survey station:

 $\mathbf{C_p} = \begin{bmatrix} 0.0484 & 0.0246 \\ 0.0246 & 0.0196 \end{bmatrix} \text{ (metre}^2\text{)}$

Calculate the semi-major axis, semi-minor axis, and the orientation of the standard error ellipse associated with this position error.

PROBLEM 2

Given the following mathematical models

$$\mathbf{f}_{1}(\ell_{1}, \mathbf{x}_{1}) = 0 \quad \mathbf{C}_{\ell_{1}} \quad \mathbf{C}_{x_{1}}$$
$$\mathbf{f}_{2}(\ell_{2}, \mathbf{x}_{2}) = 0 \quad \mathbf{C}_{\ell_{2}}$$
$$\mathbf{f}_{3}(\mathbf{x}_{2}) = 0 \quad \mathbf{C}_{f_{2}}$$

where $\mathbf{f}_1, \mathbf{f}_2$ and \mathbf{f}_3 are vectors of mathematical models, \mathbf{x}_1 and \mathbf{x}_2 are vectors of unknown parameter, ℓ_1 and ℓ_2 are vectors of observations, $\mathbf{C}_{\ell_1}, \mathbf{C}_{\ell_2}, \mathbf{C}_{x_1}$ and \mathbf{C}_{f_3} are covariance matrices.

a) Formulate the variation function.

Derive the most expanded form of the least squares normal equation system

PROBLEM 3

Define and explain briefly the following terms:

- a) Type I error
- b) Type II error
- c) Accuracy
- d) Precision
- e) Filtering

25

15

15

Marks

PROBLEM 4

Given the following direct model for y_1 and y_2 as a function of x_1 , x_2 and x_3 :

$$y_1 = 5x_1 - 2x_2 + 3x_3 + 9$$
$$y_2 = 3x_1 - x_2 + 2x_2 + 4$$

where $x_1 = x_2 = x_3 = 1$ and the covariance matrix of the x's: $C_x = \begin{bmatrix} 3 & -1 & -2 \\ -1 & 5 & 1 \\ -2 & 1 & 4 \end{bmatrix}$

Compute the covariance matrix \mathbf{C}_{y} for y's.

PROBLEM 5

Given a plane triangle in which the three angles have been observed:

 $a = 40^{\circ}00'15''$ $b = 85^{\circ}00'10''$ $g = 54^{\circ}59'15''$

All angles were measured with equal precision $(\mathbf{s}_{a}^{2} = \mathbf{s}_{b}^{2} = \mathbf{s}_{g}^{2} = 16 \ arc \sec^{2})$ and assumed to be uncorrelated. Perform a least-squares adjustment and

a) Compute the solution vector **x** and its covariance matrix $C_{\hat{x}}$.

- b) Compute the residual vector **r** and its covariance matrix $C_{\hat{r}}$.
- c) Compute the variance factor \hat{s}_o^2 .
- d) Perform a test on the estimated variance factor at significance level a = 0.05.
- e) Perform a test for gross errors on each estimated residual at significance level a = 0.01.

The critical values that might be required in the testing are provided in the following tables:

а
0.001
0.002
0.003
0.004
0.005
0.01
0.05
K _a
<i>К_а</i> 3.09
3.09
3.09 2.88 2.75
3.09 2.88

1

30

1.64
a
0.001
0.005
0.01
0.02
0.05
0.10

$$c_{a,v}^2(v=1)$$

10.83
7.88
6.63
5.41
3.84
2.71
 $c_{a,v}^2(v=2)$
13.82
10.60
9.21
7.82
5.99
4.61

2.33

where K_{a} is determined by the equation $\mathbf{a} = \int_{K_{a}}^{\infty} \frac{1}{\sqrt{2p}} e^{-x^{2}/2} dx$ and $c_{a,v}^{2}$ is determined by the equation $\mathbf{a} = \int_{c_{a,v}}^{\infty} f(\mathbf{c}^{2}) d\mathbf{c}^{2}$ in which v is the degrees of freedom.