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Note: This examination consists of 5 questions on 2 pages

PROBLEM 1

Given below is the covariance matrix obtained from a least-squares adjustment for a
survey station:
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0246.00484.0
pC  (metre2)

Calculate the semi-major axis, semi-minor axis, and the orientation of the standard
error ellipse associated with this position error.
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PROBLEM 2
Given the following mathematical models
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where 321 f  f ,f and  are vectors of mathematical models, 21 x  x and  are vectors of

unknown parameter, 21 ll   and  are vectors of observations,

3121 fx and C   C ,C ,C ll are covariance matrices.

a) Formulate the variation function.

Derive the most expanded form of the least squares normal equation system
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PROBLEM 3
Define and explain briefly the following terms:

a) Type I error

b) Type II error

c) Accuracy

d) Precision

e) Filtering
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PROBLEM 4 15 marks

Given the following direct model for y1 and y2 as a function of x1, x2 and x3:
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where x1 = x2 = x3 = 1 and the covariance matrix of the x’s:
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Cx

Compute the covariance matrix Cy for y’s.
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PROBLEM 5

Given a plane triangle in which the three angles have been observed:

519554010085510040 ′′′°=′′′°=′′′°= γβα

All angles were measured with equal precision ( 2222 sec16 arc=== γβα σσσ ) and

assumed to be uncorrelated. Perform a least-squares adjustment and

a) Compute the solution vector x and its covariance matrix xC ˆ .

b) Compute the residual vector r and its covariance matrix rC ˆ .

c) Compute the variance factor 2ˆoσ .

d) Perform a test on the estimated variance factor at significance level 05.0=α .

e) Perform a test for gross errors on each estimated residual at significance level
01.0=α .

The critical values that might be required in the testing are provided in the following
tables:

α
0.001
0.002
0.003
0.004
0.005
0.01
0.05

αK

3.09
2.88
2.75
2.65
2.58
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2.33
1.64

α
0.001
0.005
0.01
0.02
0.05
0.10
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where αK  is determined by the equation dxe x
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χχα  )(  in which v  is the degrees of

freedom.


