SCHEDULE I / ITEM 2

March 2006

LEAST SQUARES ESTIMATION AND DATA ANALYSIS

Note:	This examination consists of 6 questions on 3 pages.	Mai	<u>rks</u>
Q. No	<u>Time: 3 hours</u>	<u>Value</u>	Earned
1	Define and explain briefly the following terms: a) Precision and accuracy b) Statistical independence and uncorrelation c) Null hypothesis and alternative hypothesis d) Redundancy of a linear system e) Unbiasedness of an estimator	10	
2	Given the following mathematical models $f_1(\ell_1,x_1,x_2)=0 \qquad C_{\ell_1} C_{x_1}$ $f_2(\ell_2,x_2)=0 \qquad C_{\ell_2}$ where $f_i,\ x_i,\ \ell_i$ and C_i represent mathematical model vectors, unknown parameter vectors, observation vectors and covariance matrices. a) Linearize the mathematical models b) Formulate the variation function c) Derive the most expanded form of the least squares normal equation system.	20	
3	Given a leveling network below where A and B are two control points with known heights, Δh_1 and Δh_2 are two height difference measurements with standard deviations of σ_1 and σ_2 , respectively and $\sigma_1 = 0.5$ σ_2 . Determine the value of σ_1 and σ_2 so that the standard deviation of the height solution for point P using least squares adjustment is equal to 4 mm.	10	

4	Given the following direct model for the horizontal coordinates (x, y) of a survey station as a function of ℓ_1 , ℓ_2 and ℓ_3 : $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 & -2 & 1 \\ 5 & 3 & -1 \end{bmatrix} \begin{bmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{bmatrix}$ where the covariance matrix of the ℓ 's is $ C_{\ell} = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 5 & 1 \\ -1 & 1 & 2 \end{bmatrix} $ a) Compute the covariance matrix for x and y. b) Determine the semi-major, semi-minor axis and the orientation of the standard error ellipse associated with this station.	20	
5	Perform a least squares adjustment of the following leveling network in which three height differences Δh_i ($i=1, 2, 3$) were observed with a variance of 2 cm ² . The misclosure w is 5 cm.	20	

6	b) Come c) If to The cr	easurement the test in	cation. global tents with a a) fails, ues that	est to de a confider conduct	cide if the cide i	there exist of $1 - \alpha = 0$ of the test of	s any ou 99%.	er(s).	the 20	
		α	0.001	0.01	0.02	0.05	0.10	٦		
		$\chi^2_{\alpha, \nu=2}$	13.82	9.21	7.82	5.99	4.61	_		
	α	0.001	0.002	0.003	0.004	0.005	0.01	0.05	1	
	K_{α}	3.09	2.88	2.75	2.65	2.58	2.33	1.64]	

Total Marks:

100